• Published on: Oct 28, 2020
  • 2 minute read
  • By: Dr Rajan ( Medical Second Opinion Cell)

Hepatitis C Nobel Prize

  • WhatsApp share link icon
  • copy & share link icon
  • twitter share link icon
  • facebook share link icon

Earlier this month the Nobel Prize in Physiology and Medicine was jointly awarded to Harvey J Alter, Michael Houghton and Charles M Rice for the discovery of the Hepatitis C virus. This helped push our understanding of blood-borne hepatitis, a major global health problem that is one of the leading causes of cirrhosis and liver cancer alongside Hepatitis B. It led the way in introducing new tests for chronic hepatitis as well as new treatments that have saved the lives of millions.

HEPATITIS

Hepatitis is the inflammation of your liver, the largest solid organ in your body. Though there are numerous other causes of hepatitis, including alcohol abuse, drugs and toxins (including paracetamol overdose), and autoimmune disorders (such as Wilson’s disease), viral infections are the most common worldwide causes for hepatitis. Hepatitis A was the first to be discovered, transmitted by polluted food and water, and results in a short-term transient hepatitis. Hepatitis B on the other hand is transmitted through blood and is more of an issue as it can lead to chronic cirrhosis and possible liver cancer. It can remain indolent in a person, causing disease long after the initial infection.

Blood borne hepatitis was first discovered in the 1960s, when it was found that some patients would become ill after receiving blood transfusions. Despite this discovery and new tests for Hepatitis B reducing the number of transfusion related hepatitis, a large number of cases remained.

NOT A, NOT B

Harvey Alter, working at the US National Institute of Health, was studying the occurrence of hepatitis in blood transfusion patients. His team showed that blood from these infected patients could transmit the disease to chimpanzees, resulting in hepatitis. This agent had the properties of a virus, one that was “non-A, non B” hepatitis.

Further investigation into the virus would require the input of Michael Houghton, working for Chiron pharmaceutical. His team created a collection of DNA fragments found in the blood of infected chimpanzees. Though the majority of these fragments were from the chimpanzee, enough were from the virus. They were able to utilise this information to identify antibodies against the suspected virus, and ultimately identify it as the flavivirus Hepatitis C.

The final piece of the puzzle was shown by Charles M Rice, a researcher at Washington University, St Louis – could the virus alone cause hepatitis. He studied the RNA of Hepatitis C to identify regions that may be used for replication, and areas that might hinder replication. This was key as the virus can lay dormant for years, replicating at a slow rate before causing damage to the liver. For researchers, this was an issue as it was not feasible to wait years and see if the suspected virus caused hepatitis.  By genetically engineering the viral genome, he developed a variant of Hepatitis C that would only multiple rapidly and have no mechanism to inactivate itself for dormancy. This strain caused rapid changes to the livers of infected chimpanzees; the same changes seen in hepatitis patients.

. ;.,hrvxzThe impact was significant. Prior to this, receiving a blood transfusion was like Russian Roulette. You were receiving life saving therapy, but it coZuld also be a hidden death sentence. Now that hepatitis had been discovered, it became possible to screen patients prior to donation, to screen blood transfusion bags, and to start developing treatments for the virus. 

The fight is not over yet. There are still over 70 million people who still live with the virus, and it still kills around 400,000 a year. Its only very recently that we have found treatments that can reduce the viral load in patients to levels that they are considered cured. This treatment remains expensive, and we are very far away from eradication itself.

Read Blog

Sleep Debt and Its Impact on the Body: Hidden Risks of Chronic Sleep Loss

Sleep is not a luxury; it is a biological necessity. Yet in today’s fast-paced world, many people consistently sacrifice sleep due to work demands, screen time and stress. Over time, insufficient sleep accumulates into what is known as sleep debt. Understanding sleep debt and its impact on the body is essential because chronic sleep loss silently affects nearly every organ system.

According to the World Health Organization and global sleep research, chronic sleep deprivation is associated with increased risk of cardiovascular disease, metabolic disorders and mental health conditions.

 

What Is Sleep Debt?

Sleep debt refers to the cumulative effect of not getting enough sleep.

For example:

  • if you need 8 hours but sleep 6 hours daily

  • you accumulate 2 hours of sleep debt per night

Over a week, that equals 14 hours of lost sleep.

This deficit places strain on the body.

 

Why Sleep Is Critical for Health

Sleep supports:

  • brain function

  • immune response

  • hormonal regulation

  • tissue repair

  • memory consolidation

Without adequate sleep, these processes become impaired.

 

Immediate Effects of Sleep Debt

Short-term consequences include:

  • daytime fatigue

  • poor concentration

  • mood swings

  • irritability

  • reduced reaction time

Even one night of poor sleep affects cognitive performance.

 

Sleep Debt and Hormonal Imbalance

Sleep regulates several key hormones.

Chronic sleep loss disrupts:

  • cortisol

  • insulin

  • leptin and ghrelin (hunger hormones)

This imbalance affects appetite, stress and metabolism.

 

Impact on Metabolic Health

Sleep debt increases:

  • insulin resistance

  • blood sugar fluctuations

  • abdominal fat accumulation

ICMR and NFHS-5 data show rising metabolic disorders in India, partly linked to lifestyle patterns including poor sleep.

 

Increased Risk of Obesity

When sleep is insufficient:

  • appetite hormones increase

  • cravings for high-calorie foods rise

  • impulse control weakens

Sleep deprivation promotes weight gain.

 

Sleep Debt and Immunity

The immune system relies heavily on sleep.

Chronic sleep loss:

  • reduces infection-fighting cells

  • increases inflammation

  • slows recovery from illness

Lancet research confirms that sleep deprivation weakens immune response.

 

Cardiovascular Consequences

Sleep debt increases risk of:

  • hypertension

  • heart disease

  • stroke

Poor sleep affects blood pressure regulation and vascular health.

 

Mental Health Impact

Sleep and mental health are deeply connected.

Sleep debt contributes to:

  • anxiety

  • depression

  • emotional instability

Chronic insomnia is both a cause and consequence of mental health disorders.

 

Cognitive Decline and Brain Health

Lack of sleep impairs:

  • memory

  • attention

  • decision-making

Over time, chronic sleep deprivation may increase risk of neurodegenerative disorders.

 

Sleep Debt and Inflammation

Chronic sleep loss elevates inflammatory markers.

Persistent inflammation contributes to:

  • metabolic syndrome

  • cardiovascular disease

  • autoimmune conditions

Preventing sleep debt reduces systemic inflammation.

 

Can Sleep Debt Be Recovered?

Short-term sleep debt can be partially recovered through:

  • consistent longer sleep

  • improved sleep hygiene

However, chronic sleep deprivation requires long-term behavioural changes.

Weekend “catch-up sleep” offers temporary relief but does not fully reverse long-standing sleep debt.

 

Warning Signs of Sleep Debt

Common indicators include:

  • reliance on caffeine

  • difficulty waking up

  • daytime drowsiness

  • poor focus

  • frequent illness

Persistent symptoms require lifestyle correction.

 

Practical Strategies to Reduce Sleep Debt

Maintain a Consistent Sleep Schedule

Go to bed and wake up at the same time daily.

 

Limit Screen Exposure Before Bed

Blue light suppresses melatonin production.

 

Create a Sleep-Friendly Environment

Dark, quiet and cool environments improve sleep quality.

 

Manage Stress

Relaxation techniques reduce cortisol levels and support sleep.

 

Avoid Heavy Meals and Caffeine at Night

These disrupt sleep cycles.

 

Role of Preventive Health Checkups

Screening helps detect:

  • hypertension

  • metabolic imbalance

  • stress-related conditions

Sleep quality assessment should be part of preventive care.

 

Long-Term Benefits of Adequate Sleep

Restorative sleep supports:

  • stable mood

  • strong immunity

  • healthy weight

  • improved productivity

  • reduced disease risk

Sleep is foundational to wellness.

 

Conclusion

Understanding sleep debt and its impact on the body highlights the critical role sleep plays in maintaining physical and mental health. Chronic sleep loss disrupts hormones, weakens immunity, increases metabolic risk and affects heart health. While occasional sleep loss may be manageable, consistent deprivation carries serious long-term consequences. Prioritising adequate, high-quality sleep is one of the most powerful steps toward protecting overall health and preventing chronic disease.

 

References

  • World Health Organization (WHO) – Sleep and Non-Communicable Diseases

  • Indian Council of Medical Research (ICMR) – Lifestyle Disorders and Sleep Patterns

  • National Family Health Survey (NFHS-5) – Adult Health Indicators

  • Lancet – Sleep Deprivation and Chronic Disease Research

  • NITI Aayog – Preventive Healthcare and Lifestyle Risk Factors

See all

Live Doctor consultation
Live Doctor Chat

Download Our App & Get Consultation from anywhere.

App Download
call icon for mobile number calling and whatsapp at secondmedic