• Published on: Jan 02, 2021
  • 2 minute read
  • By: Dr Rajan Choudhary

COVID-19 Variant: What We Know About This New Mutation

  • WhatsApp share link icon
  • copy & share link icon
  • twitter share link icon
  • facebook share link icon

COVID-19 Variant: What we know about this new mutation

In early December a new variant of COVID -19 was detected in the UK, raising concerns across the world. SARS-CoV-2 has already significantly impacted the world, with 84 million cases worldwide and nearly 2 million deaths. Could the new variant cause further havoc? Is it something we should be worried about? Today we will have a look at what we know so far about the virus.

MUTAGENESIS

To start with we should go over viral mutations. Unlike complex organisms, viruses are highly prone to genetic mutations, even more than bacteria. All organisms including humans, birds, even worms, are prone to mutations as well. However due to their complexity, there is much higher risk of mutations causing significant problems with their cellular and genetic processes, problems that are often incompatible with life, or lead to cancer. For this reason, there are significant genetic roadblocks present to prevent such mutations from occurring.

Viruses on the other hand have genetic replication machinery of poor “quality”, prone to introducing mutations. Since they replicate quickly, with little care on which viral particles survive, it matters little if hundreds of viruses do not survive, as further thousands will and continue to spread in their host. It is for this reason we have such difficulty treating viruses or making viruses against them .

COVID VARIANT

The variant was first picked up by the COVID-19 Genomics UK consortium, which undertakes random genetic sequencing of positive COVID-19 samples across the UK. Since April they have sequenced 140,000 virus genomes, to identify and track outbreaks across the UK. The strain was first identified in September and sequenced in early October. However, the significance of this strain was not realized until the end of the year. By 13th December 1108 cases had been identified across 60 different locations, though the true number is likely much higher. In Norfolk, it accounts for nearly 20% of all samples.

17 Variations have been identified, most significantly in the spike protein the virus uses to bind to the ACE2 receptor found in the lungs. Changes in this protein may have resulted in it being more infectious and spreading more quickly between people. A review of current evidence has shown the rate of transmission was 71% higher than the other variants and may also have a much higher viral load. This has given it an advantage over the other COVID-19 strains- it has already been detected in South Africa, Europe, and America, and it is likely to become the dominant global strain in the near future.

It appears children are more susceptible to catching this virus. The virus propagated at a time when schools were open and running, whilst the rest of the country remained in lockdown. This may have provided a larger pool of children for the virus to spread in, resulting in this change. However, this does not mean that the virus “attacks” children, rather it is able to attach to ACE2 receptors in children’s lungs with greater ease and spread quickly.

VACCINE

The most important question on everyone’s mind – will the vaccine be effective against this new strain? If not, lockdown rules may be extended until new vaccines are discovered, and by then newer strains may leapfrog ahead and make the new vaccines irrelevant again.

So far experts believe that the new variant is unlikely to make vaccines ineffective. The vaccines all produce antibodies against the viral spike protein, but so far it appears the mutation has not changed the shape or function of the spike protein enough for antibodies to fail against it. The antibodies should be able to recognize enough sites on the spike protein to successfully attach, neuter the protein, and present the virus for destruction by the body’s immune system. Unfortunately, it will take some time to fully understand the effects of the mutation, though we can remain hopeful for now

www.secondmedic.com

Read Blog
Inflammation

How Inflammation Affects Overall Health: Understanding the Hidden Risks

Inflammation is often misunderstood. While it is a vital protective response of the immune system, persistent or chronic inflammation can quietly damage tissues and increase the risk of serious diseases. Understanding how inflammation affects overall health is crucial in preventing long-term complications and maintaining optimal wellbeing.

According to the World Health Organization and global medical research published in Lancet, chronic inflammation is linked to a wide range of non-communicable diseases, including heart disease, diabetes and autoimmune disorders.

 

What Is Inflammation?

Inflammation is the body’s natural response to:

  • infection

  • injury

  • toxins

  • stress

It activates immune cells to eliminate harmful stimuli and promote healing.

There are two main types:

Acute Inflammation

Short-term and protective.
Examples include swelling after injury or fever during infection.

Chronic Inflammation

Long-term, low-grade inflammation that persists even without injury.

Chronic inflammation is harmful.

 

How Chronic Inflammation Develops

Persistent inflammation can result from:

  • unhealthy diet

  • sedentary lifestyle

  • obesity

  • chronic stress

  • environmental toxins

  • untreated infections

Modern lifestyle patterns contribute significantly to this condition.

 

Impact on Heart Health

Inflammation damages blood vessels and promotes plaque formation.

This increases risk of:

  • heart attack

  • stroke

  • hypertension

ICMR data highlights cardiovascular disease as a leading cause of death in India, with inflammation playing a contributing role.

 

Link Between Inflammation and Diabetes

Chronic inflammation interferes with insulin signalling.

This leads to:

  • insulin resistance

  • elevated blood sugar

  • metabolic syndrome

NFHS-5 data shows rising diabetes prevalence, partly linked to inflammatory lifestyle factors.

 

Effect on Joint and Muscle Health

Inflammatory processes contribute to:

  • arthritis

  • joint stiffness

  • muscle pain

Autoimmune diseases often involve chronic inflammation.

 

Gut Health and Inflammation

The gut plays a central role in immune regulation.

Poor diet and stress disrupt gut balance, triggering:

  • inflammatory bowel conditions

  • digestive discomfort

  • nutrient malabsorption

Gut inflammation impacts systemic health.

 

Brain Health and Inflammation

Emerging research suggests chronic inflammation affects:

  • memory

  • mood

  • cognitive performance

Inflammatory markers are associated with depression and neurodegenerative disorders.

 

Chronic Fatigue and Inflammatory Stress

Persistent inflammation causes:

  • ongoing fatigue

  • reduced stamina

  • sleep disturbances

The immune system remains in constant activation mode.

 

Role in Autoimmune Disorders

Autoimmune diseases occur when the immune system mistakenly attacks healthy tissues.

Chronic inflammation is central to conditions such as:

  • rheumatoid arthritis

  • lupus

  • inflammatory bowel disease

 

Signs of Chronic Inflammation

Symptoms may include:

  • unexplained fatigue

  • persistent joint pain

  • digestive issues

  • frequent infections

  • skin problems

Early detection is important.

 

Lifestyle Factors That Increase Inflammation

High Sugar Intake

Excess sugar promotes inflammatory pathways.

 

Processed Foods

Trans fats and additives trigger immune responses.

 

Sedentary Lifestyle

Lack of exercise reduces anti-inflammatory benefits.

 

Poor Sleep

Sleep deprivation increases inflammatory markers.

 

Chronic Stress

Elevated cortisol disrupts immune balance.

 

Natural Ways to Reduce Inflammation

Anti-Inflammatory Diet

Include:

  • leafy greens

  • fruits rich in antioxidants

  • nuts and seeds

  • whole grains

Avoid excessive processed foods.

 

Regular Physical Activity

Exercise lowers inflammatory markers and improves circulation.

 

Stress Management

Meditation and breathing exercises reduce stress hormones.

 

Adequate Sleep

7–8 hours of quality sleep supports immune regulation.

 

Maintain Healthy Weight

Excess abdominal fat produces inflammatory chemicals.

 

Role of Preventive Health Screening

Regular tests such as:

  • blood sugar

  • lipid profile

  • inflammatory markers

help monitor risk factors early.

 

Importance of Early Intervention

Unchecked inflammation increases risk of:

  • cardiovascular disease

  • metabolic disorders

  • organ damage

Timely lifestyle changes reverse early inflammatory effects.

 

Long-Term Health Benefits of Inflammation Control

Reducing inflammation supports:

  • heart health

  • stable blood sugar

  • improved immunity

  • enhanced cognitive function

  • reduced pain

Preventive strategies protect long-term wellbeing.

 

Conclusion

Understanding how inflammation affects overall health reveals its profound impact on the heart, brain, gut and metabolic systems. While acute inflammation protects the body, chronic inflammation silently contributes to major diseases. Fortunately, lifestyle changes such as balanced nutrition, regular exercise, quality sleep and stress management significantly reduce inflammatory burden. Prevention and early monitoring remain the most effective tools for protecting overall health and ensuring long-term vitality.

 

References

  • World Health Organization (WHO) – Chronic Disease and Inflammation Reports

  • Indian Council of Medical Research (ICMR) – Cardiovascular and Metabolic Health Studies

  • National Family Health Survey (NFHS-5) – Diabetes and Hypertension Data

  • NITI Aayog – Preventive Healthcare Strategy Reports

  • Lancet – Inflammation and Chronic Disease Research

See all

Live Doctor consultation
Live Doctor Chat

Download Our App & Get Consultation from anywhere.

App Download
call icon for mobile number calling and whatsapp at secondmedic