• Published on: Jun 20, 2020
  • 4 minute read
  • By: Dr Rajan Choudhary

Artificial Intelligence In Healthcare

  • WhatsApp share link icon
  • copy & share link icon
  • twitter share link icon
  • facebook share link icon

Artificial intelligence. This phrase means different things to different people. To some, it conjures ideas of robots having the same intelligence and creativity as humans, able to do any tasks we instruct them, except better than us. To others it is a new and exciting tool, one that could revolutionise the way we work, but also the way labour is distributed in society. And for developers? They dread being asked to make an artificial intelligence system by people who have only heard buzzwords such as “machine learning” and “deep neural network” in headlines and blogs.

In this blog we will look at the basics of AI terminology, so we can understand what these terms really mean, and whether they will have an impact on healthcare.

WHAT IS ARTIFICIAL INTELLIGENCE?

Even this question is difficult to answer, as it enters the realms of philosophy and discussion over the meaning of intelligence. What makes a person intelligent? Is it their retained knowledge? Because a computer can store the entirety of known human knowledge on a disc. Is it understanding and following instructions? Or is it creativity, a skill even the average person may struggle with at times. We know one thing for sure, distilling a person’s intelligence down to a single IQ number is disingenuous and doesn’t represent true intelligence.

Similarly people define AI in different ways. A broad definition looks at the ability for a computer or programme to be able to respond autonomously to commands, to the changing environment around them, recognise audio or visual cues, process the information without strict defined rules and spit out a desired function.

The key features appear to be autonomy: the ability to function independent of a human controller or guide, and adaptability: the ability to work beyond strict rules and criteria, and function in situations or with inputs beyond their original programming.

In medicine, a “dumb” system could work with physical values, for instance blood results, compare them to a “normal range” and determine if results are abnormal (e.g if the patient has anaemia).

A smart “AI” would be able to look at a CT scan, notice subtle changes in the images, compare it against what a normal scan should look like, and identify the pathology. This is very difficult because normal scans can differ noticeably between patients, (for instance due to anatomical differences between people), and disease findings can be even more varied, unusual, abnormal. Human brains have incredibly complex pattern recognition systems – over a third of the human brain is dedicated to just visual processing. Imagine trying to re-create that in code.

At first people tried to emulate this with fixed programming. For instance, to teach a programme to recognise a bicycle, you would need to teach it to first exclude anything that is not a vehicle, then exclude anything that does not have wheels, has more than 2 wheels, has a frame connecting the two wheels, has a chain connecting the pedals and the rear wheels……and so on. All of this for a bike. Now imagine trying to code it to recognise subtle changes to cells under a microscope, to recognise cancer cells, to recognise an abnormal mass on a scan. Clearly this solution is very clunky, and simply not feasible.

MACHINE LEARNING

Modern AI systems have moved towards “machine learning”. This is a statistical technique that fits learnt models to inputted data, and “learns” by training models with known data sets. Instead of a person defining what a bicycle is, the model is flooded with thousands of pictures of bikes, and the programme forms its own rules to identify a bike. If this model is then shown a picture of a bike it will show the statistical likelihood of the picture being a bike. The system could be expanded by  further training the model with pictures of motorbikes, scooters and other two wheeled forms of transport. Now if given a picture, the model can determine what type of two wheel transport it has been shown.

The healthcare application can be simple – lets look at a radiology example.  Teach an AI model what normal lungs look like, then show it images of various pathologies such as pneumonia, fibrosis or even lung cancer. If fed enough images and variations of a type of disease, the AI’s statistical analysis might even find associations and patterns to identify a disease that a human radiologist would be unable to find.

NEURAL NETWORKS

A more complex form of machine learning is the neural network. Its name suggests it is analogous to the neurons in a human brain, though this analogy does not stretch much further. Neural networks split the image into various different components, analyse these components to see if it has variables and features before spitting out a decision.

The most complex forms of machine learning involve deep learning. These models utilise thousands of hidden features and has several layers of decision making and analysis before a decision is made. As computing power increases, the ability to create ever more complex models that can look at more complex 3 dimensional images full of dense information. These deep learning models have been able to identify cancer diagnoses in CT and MRI scans, diagnoses that have been missed by even the most expert consultants. They can also identify structures and patterns the human eyes cannot, and may end up being better at diagnoses than a highly trained specialist. Of course such diagnoses would still have to be checked by a doctor, as due to the medico-legal implications that could occur from incorrect diagnoses created by a computer utilising models even their programmers cannot understand.

NATURAL LANGUAGE PROCESSING

But the application of AI is not limited to identifying images and scans. One of the greatest hurdles a computer faces is trying to understand human speech. Dictation from speech to text is easy, but understanding the meaning of what was said, and trying to use that to create instructions or datasets, that’s hard. This is why the iPhone’s Siri or Google Assistant on Android phones seem so limited. They can only recognise certain set instructions such as “What is the weather” or “Set an alarm for…”. More complicated instructions or requests usually results in an error.

People don’t speak in simple sentences. If asked about their symptoms, every patient will use different sentence structures, adjectives, prioritise different symptoms depending on how it affects them, and create a narrative rather than a list of symptoms. Similarly when writing in patients notes, doctors will also use complex sentences, short-hands, structure their notes differently. Feeding this information to Siri would not output a clear diagnosis, but rather give the poor digital assistant a migraine.

Deep learning is being used to analyse natural speech to pick out the important information that will lead to a diagnosis, similar to how a medical student is trained when taking a history. If deployed successfully this would be invaluable in triaging patients based off the severity of their symptoms, and assigning them to the right specialists. 

It would also have huge implications for research. Identifying data is very labour and time intensive, and the costs of trawling through patient notes can significantly limit the feasibility of research studies. A deep learning AI system could read through the notes, identify all the important symptoms, how a patient is improving on a day to day basis and other subtle parameters, and do so without human supervision through thousands of cases without boredom or fatigue. The wealth of information available could significantly improve the quality of research performed.

Artificial Intelligence and the various buzzwords can be difficult to break down and digest. And certainly this blog will not answer all of your questions, and may leave you with more questions than you started with. But understanding the basics of AI will help in appreciating the effort that goes into creating these systems, and also acknowledge the hurdles that limit AI from becoming prevalent across healthcare.

At least for now. Progress in this field is constant. By next year the AI landscape may be very different.

Dr Rajan Choudhary

HEAD OF PRODUCTS, SECOND MEDIC INC UK

Read Blog
Replace Junk with Subscription Snack Packs: A Practical Approach to Preventive Nutrition in India

Replace Junk with Subscription Snack Packs: A Practical Approach to Preventive Nutrition in India

India is witnessing a growing shift toward healthier eating habits, yet junk food consumption continues to rise across all age groups. According to ICMR and NFHS-5 data, high-calorie packaged snacks, sugary beverages and deep-fried foods contribute significantly to obesity, diabetes and cardiovascular risk. Replacing these items with nutritious snack alternatives is one of the simplest yet most effective steps toward preventive wellness.

Subscription snack packs offer a structured, convenient and affordable way to transition from unhealthy snacking to balanced nutrition. SecondMedic promotes this approach as part of a broader preventive health ecosystem that focuses on long-term behavioural change rather than temporary diets.

 

Why Indians are Choosing Healthy Snack Subscriptions

1. Convenience in fast-paced lifestyles

Urban and semi-urban households often depend on quick, accessible snacks to keep up with busy schedules. Healthy subscription packs bring pre-portioned nutrition directly to the doorstep.

2. Rising health concerns

India now ranks among the world’s highest in:

  • Diabetes prevalence

  • Childhood obesity

  • Hypertension

  • High cholesterol
     

Replacing junk food is essential for reducing these long-term risks.

3. Growing awareness of clean eating

People are moving toward:

  • Low-sugar

  • Low-sodium

  • High-fibre

  • High-protein

  • Non-fried
    snack alternatives.

     

4. Cost-effectiveness

Contrary to belief, balanced snack packs cost less than repeated purchases of unhealthy packaged foods.

 

What Makes Subscription Snack Packs Healthier?

Healthy snack packs are curated for balanced nutrition:

• Nuts and seeds

Rich in healthy fats, fibre and minerals.

• Millet-based snacks

Low GI, nutrient-dense and suitable for diabetics.

• Dried fruits

Provide natural sweetness without refined sugar.

• Roasted chana and legumes

Excellent plant-based protein sources.

• Low-sugar bars

Made from oats, dates, nuts and seeds.

• Whole-grain crackers

Better than refined flour biscuits.

• Herbal teas

Support digestion and relaxation.

These snacks reduce cravings while supporting metabolic health.

 

Why Junk Food Needs Replacement

• High in trans fats

Linked to heart disease and inflammation.

• Excess sugar

Promotes insulin resistance, weight gain and metabolic syndrome.

• Refined flour

Lacks fibre and elevates glucose rapidly.

• Additives & preservatives

May contribute to long-term digestive and metabolic issues.

• Instant cravings

Junk foods trigger overeating by stimulating dopamine pathways.

Replacing them with healthier options breaks this cycle.

 

How Subscription Snack Packs Support Preventive Healthcare

1. Portion control

Pre-measured servings reduce the risk of overeating.

2. Balanced nutrition

Snack packs provide fibre, healthy fats and micronutrients missing from typical Indian diets.

3. Reduced decision fatigue

Users do not have to search for healthy options daily.

4. Behavioural consistency

Weekly or monthly packs promote long-term habit formation.

5. Support for chronic disease management

Especially helpful for:

  • Diabetes

  • PCOS

  • Thyroid issues

  • Heart disease
     

SecondMedic integrates snack guidance into dietitian consultations and AI-driven nutrition analysis.

 

The Role of AI Health Guide in Smarter Snacking

SecondMedic’s AI Health Guide provides:

• Calorie and nutrient insights

Evaluates daily intake based on user habits.

• Snack recommendations

Based on medical conditions, preferences and goals.

• Craving pattern analysis

Identifies triggers for unhealthy eating.

• Personalised preventive plans

Aligns snacking habits with heart, gut and metabolic health.

This makes snack substitution easier and more sustainable.

 

How to Transition from Junk Food to Healthy Snack Packs

Step 1: Identify your biggest cravings

Sugary, salty, crunchy or fried?

Step 2: Find healthier alternatives

For example:

  • Replace chips ? roasted makhana

  • Replace sweets ? dates + nuts

  • Replace biscuits ? whole-grain crackers
     

Step 3: Use subscription packs for structure

Pre-curated boxes guide behaviour change.

Step 4: Track progress

Energy levels improve within 2-4 weeks.

Step 5: Build long-term habits

Consistency leads to metabolic improvement.

 

Conclusion

Replacing junk food with subscription snack packs is an effective and convenient step toward preventive wellness in India. By combining healthier ingredients, balanced nutrition and consistent delivery, subscription packs help individuals make better choices daily. With expert guidance and AI-driven insights from SecondMedic, these changes become sustainable, personalised and impactful for long-term health.

 

References

• ICMR - Dietary Patterns & Junk Food Consumption Study
• NFHS-5 - Nutrition Deficiencies & Lifestyle Data India
• NITI Aayog - Preventive Health & Nutrition Strategy
• WHO - Healthy Diet & Non-Communicable Disease Guidelines
• Lancet - Consumption Patterns & Cardiometabolic Risk
• Statista India - Healthy Snacking Trends
• EY-FICCI - Consumer Behaviour Toward Preventive Health

See all

Live Doctor consultation
Live Doctor Chat

Download Our App & Get Consultation from anywhere.

App Download
call icon for mobile number calling and whatsapp at secondmedic