• Published on: Apr 30, 2022
  • 2 minute read
  • By: Second Medic Expert

What Is PET Scan ?

  • WhatsApp share link icon
  • copy & share link icon
  • twitter share link icon
  • facebook share link icon

A PET scan (positron emission tomography) is a type of imaging test that uses a radioactive tracer to look for changes in the function of cells and tissues. A tracer is a substance that is introduced into the body to make it easier to see certain areas or organs. The radioactive tracer used in PET scans emits positrons, which are tiny particles that collide with electrons in the body. This creates gamma rays that can be detected by a scanner and used to create images of the inside of the body. PET scans are often used to diagnose cancer because tumor cells typically have higher levels of activity than normal cells. They can also be used to check for treatment response, measure tumor size, and identify new tumors.

PET Scan is a nuclear medicine imaging test that uses a small amount of radioactive material, called a tracer, to look for disease in the body. A PET Scan can show how well organs and tissues are working. It can help find cancer, heart problems, and other diseases. A Positron Emission Tomography (PET) scan is a medical imaging test that helps physicians diagnose and treat diseases. PET scans use a small amount of radioactive material, called a tracer, to help physicians see how organs and tissues are functioning. The radioactive tracer is injected into the patient's body and travels to the organ or tissue being studied. Physicians can then see where the tracer collects on an image of the organ or tissue.

A PET scan is helpful in diagnosing cancer, heart disease, brain disorders, and other diseases. It can also help determine how well treatment is working. PET Scan is an acronym for Positron Emission Tomography. It's a type of medical imaging that uses a small amount of radioactive material to help diagnose and treat medical conditions. A PET scanner creates 3D images of the inside of the body. PET (positron emission tomography) scans use a small amount of radioactive material called a tracer to help doctors see certain areas of the body. The tracer is injected into a vein, and images are taken as it moves through the body.

PET scans are often used to find cancer because tumors absorb more of the radioactive material than normal tissue does. PET scans can also be used to measure blood flow, check how well drugs work, and see how active the brain is. A PET scan is a type of imaging test that uses radioactive tracers to look at the function and structure of organs and tissues in your body. A small amount of radioactive material is injected into your bloodstream and then scanned by a special camera. The camera creates pictures that show where the material has collected. This can help doctors see how well an organ is working or find tumors or other problems.

PET scan is short for positron emission tomography. It's a type of medical imaging that uses a radioactive tracer to look at organ function or tissue metabolism. The tracer is a small amount of radioactive material that's injected into the patient's bloodstream. It collects in organs and tissues, and a scanner detects the radiation emitted as it decays. This information is used to create cross-sectional images of the body that show how the organs and tissues are working. PET scans are most often used to detect cancer because tumors consume more energy than normal tissue and therefore have a higher metabolic rate. But they can also be used to evaluate other problems, such as heart disease, brain function, and joint damage.

PET scanning is a type of nuclear medicine imaging. A small amount of radioactive glucose (FDG) is injected into a vein and images are taken as the glucose moves through the body. Cancer cells use more energy than normal cells and therefore absorb more of the radioactive glucose. This allows tumors to be visualized on the scan. PET stands for Positron Emission Tomography. A PET scan is a medical imaging test that uses a radioactive tracer to look at organs and tissues inside the body. The tracer is injected into a vein, and images are taken as it moves through the body.

Read Blog
Inflammation

How Inflammation Affects Overall Health: Understanding the Hidden Risks

Inflammation is often misunderstood. While it is a vital protective response of the immune system, persistent or chronic inflammation can quietly damage tissues and increase the risk of serious diseases. Understanding how inflammation affects overall health is crucial in preventing long-term complications and maintaining optimal wellbeing.

According to the World Health Organization and global medical research published in Lancet, chronic inflammation is linked to a wide range of non-communicable diseases, including heart disease, diabetes and autoimmune disorders.

 

What Is Inflammation?

Inflammation is the body’s natural response to:

  • infection

  • injury

  • toxins

  • stress

It activates immune cells to eliminate harmful stimuli and promote healing.

There are two main types:

Acute Inflammation

Short-term and protective.
Examples include swelling after injury or fever during infection.

Chronic Inflammation

Long-term, low-grade inflammation that persists even without injury.

Chronic inflammation is harmful.

 

How Chronic Inflammation Develops

Persistent inflammation can result from:

  • unhealthy diet

  • sedentary lifestyle

  • obesity

  • chronic stress

  • environmental toxins

  • untreated infections

Modern lifestyle patterns contribute significantly to this condition.

 

Impact on Heart Health

Inflammation damages blood vessels and promotes plaque formation.

This increases risk of:

  • heart attack

  • stroke

  • hypertension

ICMR data highlights cardiovascular disease as a leading cause of death in India, with inflammation playing a contributing role.

 

Link Between Inflammation and Diabetes

Chronic inflammation interferes with insulin signalling.

This leads to:

  • insulin resistance

  • elevated blood sugar

  • metabolic syndrome

NFHS-5 data shows rising diabetes prevalence, partly linked to inflammatory lifestyle factors.

 

Effect on Joint and Muscle Health

Inflammatory processes contribute to:

  • arthritis

  • joint stiffness

  • muscle pain

Autoimmune diseases often involve chronic inflammation.

 

Gut Health and Inflammation

The gut plays a central role in immune regulation.

Poor diet and stress disrupt gut balance, triggering:

  • inflammatory bowel conditions

  • digestive discomfort

  • nutrient malabsorption

Gut inflammation impacts systemic health.

 

Brain Health and Inflammation

Emerging research suggests chronic inflammation affects:

  • memory

  • mood

  • cognitive performance

Inflammatory markers are associated with depression and neurodegenerative disorders.

 

Chronic Fatigue and Inflammatory Stress

Persistent inflammation causes:

  • ongoing fatigue

  • reduced stamina

  • sleep disturbances

The immune system remains in constant activation mode.

 

Role in Autoimmune Disorders

Autoimmune diseases occur when the immune system mistakenly attacks healthy tissues.

Chronic inflammation is central to conditions such as:

  • rheumatoid arthritis

  • lupus

  • inflammatory bowel disease

 

Signs of Chronic Inflammation

Symptoms may include:

  • unexplained fatigue

  • persistent joint pain

  • digestive issues

  • frequent infections

  • skin problems

Early detection is important.

 

Lifestyle Factors That Increase Inflammation

High Sugar Intake

Excess sugar promotes inflammatory pathways.

 

Processed Foods

Trans fats and additives trigger immune responses.

 

Sedentary Lifestyle

Lack of exercise reduces anti-inflammatory benefits.

 

Poor Sleep

Sleep deprivation increases inflammatory markers.

 

Chronic Stress

Elevated cortisol disrupts immune balance.

 

Natural Ways to Reduce Inflammation

Anti-Inflammatory Diet

Include:

  • leafy greens

  • fruits rich in antioxidants

  • nuts and seeds

  • whole grains

Avoid excessive processed foods.

 

Regular Physical Activity

Exercise lowers inflammatory markers and improves circulation.

 

Stress Management

Meditation and breathing exercises reduce stress hormones.

 

Adequate Sleep

7–8 hours of quality sleep supports immune regulation.

 

Maintain Healthy Weight

Excess abdominal fat produces inflammatory chemicals.

 

Role of Preventive Health Screening

Regular tests such as:

  • blood sugar

  • lipid profile

  • inflammatory markers

help monitor risk factors early.

 

Importance of Early Intervention

Unchecked inflammation increases risk of:

  • cardiovascular disease

  • metabolic disorders

  • organ damage

Timely lifestyle changes reverse early inflammatory effects.

 

Long-Term Health Benefits of Inflammation Control

Reducing inflammation supports:

  • heart health

  • stable blood sugar

  • improved immunity

  • enhanced cognitive function

  • reduced pain

Preventive strategies protect long-term wellbeing.

 

Conclusion

Understanding how inflammation affects overall health reveals its profound impact on the heart, brain, gut and metabolic systems. While acute inflammation protects the body, chronic inflammation silently contributes to major diseases. Fortunately, lifestyle changes such as balanced nutrition, regular exercise, quality sleep and stress management significantly reduce inflammatory burden. Prevention and early monitoring remain the most effective tools for protecting overall health and ensuring long-term vitality.

 

References

  • World Health Organization (WHO) – Chronic Disease and Inflammation Reports

  • Indian Council of Medical Research (ICMR) – Cardiovascular and Metabolic Health Studies

  • National Family Health Survey (NFHS-5) – Diabetes and Hypertension Data

  • NITI Aayog – Preventive Healthcare Strategy Reports

  • Lancet – Inflammation and Chronic Disease Research

See all

Live Doctor consultation
Live Doctor Chat

Download Our App & Get Consultation from anywhere.

App Download
call icon for mobile number calling and whatsapp at secondmedic