• Published on: Apr 13, 2020
  • 3 minute read
  • By: Dr Rajan Choudhary

Plasma Treatment For COVID-19?

  • WhatsApp share link icon
  • copy & share link icon
  • twitter share link icon
  • facebook share link icon

TREATING COVID WITH BLOOD

We have previously covered proposed treatments for COVID-19, in particular hydroxychloroquine, and explained why we shouldn’t look for a magic cure for this disease. Viruses are difficult to treat, and ultimately supportive treatment appears to be best we can achieve. But an editorial published in BioMedicine Central appears to show a novel treatment for the most ill patients, one that may have flown under most people’s radar.

“A novel treatment approach to the novel coronavirus: an argument for the use of therapeutic plasma exchange for fulminant COVID-19”

An interesting title. Lets dissect it.

SUMMARY

- Blood is made up of many different components

- The immune system recognises the virus and produces antibodies against it to neutralise it

- These antibodies float in the blood plasma, a watery solution

- The plasma can be extracted from donated blood, and given to patients suffering from COVID-19

- So far evidence suggests it can help treat the most seriously affected patients.

WHAT IS IN OUR BLOOD

To understand this we must first understand what our blood is made of. Most people know that blood functions to transport oxygen from our lungs. But this is an oversimplification. Blood has many different functions:

Transport: along with oxygen it transports sugars, fats, protein subunits throughout the body. This is done with the watery PLASMA of the blood.

Clot: cells and protein structures act to plug any holes that form from cuts and damage. This is done by the PLATELETS in the blood

Immunity: Immune cells respond to bacteria, viruses, parasites in the blood and body. They target these pathogens, identify and tag them with antibodies, and ultimately destroy them. This is done by the WHITE BLOOD CELLS.

And many more functions that we won’t bore you with.

IMMUNITY

It is this last point that is of interest to us. Our immune system consists of white blood cells that can recognise invading organisms in the blood, around cells and even invaders hiding within our own cells. All cells have protein markers on their surface, no matter if its human cells, bacterial, viral, fungal etc. These markers can be highlighted and targeted by specialised white blood cells, who in turn produce antibodies against these markers. Think of antibodies as handcuffs with flares attached: once attached other white blood cells use this information to find and destroy the invaders.

What is amazing about antibodies is how complex they are. The proteins in our body are incredibly complex. They are long chains that fold into unique shapes depending on hundreds of different types of chemical interactions. These are so complex that supercomputers can take literal years to figure out the shape of a single protein and how it folds depending on the subunits in its chain. This means that our immune system has to recognise these markers and figure out a complementary tag out of hundreds of billions of potential sequences. Antibodies have to be specific to their tag. If an antibody is produced that can target more than one tag, it can cause problems. If it targets a bacterial tag, but accidentally highlights the person’s cells as well, the immune system will start targeting and destroying the person’s organs. These auto-immune disorders can be devastating.

But when they work, antibodies are miraculous. They persist in the blood after an infection, and if a second infection occurs, memory cells in the blood can rapidly produce these antibodies before the infection can even produce symptoms. This is known as immunity, and is why we usually don’t get the same illness twice. Antibody based treatment is see as the future of medical therapy, and is something we will cover in future blogs.

PLASMA EXCHANGE

From population testing we can see that the majority of patients with COVID-19 recover, experiencing either mild symptoms, moderate symptoms requiring some form of treatment and hospitalisation, or no symptoms whatsoever. In these patients their immune system will have successfully recognised the virus and produced antibodies against it to neutralise the virus. It is the patients with severe symptoms, those in which the virus is running rampant in the body, that the production of antibodies happens too late.

Plasma exchange involves obtaining blood from patients who have beaten the virus, spinning the blood to separate out the red cells, white cells, platelets and watery plasma. The plasma contains all the glucose, small proteins and importantly for us, the antibodies. This plasma can be transfused into patients with COVID-19 that cannot cope, in order to help their immune system. These transfused antibodies will neutralise some of the viruses in the patient, reducing the viral load, amount of replication and cell destruction that causes such devastating symptoms in COVID-19.

The published editorial showed that in the most critical pneumonia patients, requiring mechanical ventilators and drugs to support the heart, mortality in plasma exchange patients resulted in a 47.8% mortality instead of 81.3%. Of course it is a single study with a limited number of patients, but the results are encouraging. It is further helped by the fact plasma exchange is a well established therapy, with established protocols known to intensivists and haematologists.

THE FUTURE

We may see the use of Plasma exchange for critically ill patients increase as the pandemic continues. It is not a treatment option available for everyone, as it requires intravenous access and careful monitoring in a controlled setting. But it also needs donation from people who have recovered from COVID and have suitable antibodies. So whilst it might not be a magic pill that everyone expects to cure COVID, it might be the difference between life and death for those that need it most.

Dr Rajan Choudhary, UK, Chief Product Officer, Second Medic Inc

www.secondmedic.com

Read Blog
Machine Learning in Healthcare India: A New Era of Predictive and Personalized Care

Machine Learning in Healthcare India: A New Era of Predictive and Personalized Care

Machine learning is driving one of the biggest transformations in Indian healthcare. Machine learning in healthcare India is improving diagnostics, predicting diseases early, and enabling personalized treatment plans based on large volumes of medical data. India’s enormous population, diverse health patterns, and rising burden of lifestyle diseases make ML an essential technology for improving care outcomes.

SecondMedic integrates machine learning across diagnostics, risk scoring, preventive care, and remote monitoring to create intelligent, data-driven healthcare experiences.

Why Machine Learning Is Crucial for India’s Healthcare

India faces major challenges: increasing chronic diseases, low doctor-to-patient ratio, and gaps in early diagnosis. Machine learning helps overcome these limitations through automated analysis and predictive insights.

ML supports:

  • Accurate disease prediction

  • Faster diagnosis

  • Personalized treatment

  • Proactive health management

  • Population-level insights
     

These benefits significantly improve care outcomes.

Machine Learning in Diagnostics

ML excels at interpreting complex medical data faster than traditional methods.

ML improves diagnostics by:

  • Identifying abnormal patterns

  • Analyzing imaging scans

  • Interpreting lab values

  • Comparing historical trends

  • Supporting clinical decisions
     

This reduces misdiagnosis and saves time.

Predictive Healthcare with Machine Learning

Predictive analytics is one of the most powerful ML applications.

ML predicts risks for:

  • Heart disease

  • Diabetes

  • Kidney disorders

  • Thyroid imbalances

  • Mental health issues

  • Respiratory disorders
     

SecondMedic provides predictive scoring for early detection.

Personalized Treatment Planning

Machine learning tailors treatment to individual needs.

ML personalizes care based on:

  • Age and genetics

  • Lifestyle patterns

  • Vitals and wearable data

  • Sleep and stress levels

  • Previous medical history
     

This ensures more accurate and effective treatment.

ML in Remote Patient Monitoring

With the rise of home healthcare, ML analyzes continuous vitals data.

ML monitors:

  • Heart rate

  • Blood oxygen

  • Blood sugar

  • Blood pressure

  • Sleep cycles
     

AI-generated alerts support timely intervention.

ML in Medical Imaging

ML enhances imaging interpretation by detecting subtle visual patterns.

Applications include:

  • Lung infections

  • Cancer markers

  • Cardiac abnormalities

  • Brain lesions

  • Kidney anomalies
     

This improves radiology accuracy and speed.

ML for Population Health in India

ML identifies health trends at a large scale, helping policymakers and hospitals plan resources.

ML provides:

  • Outbreak prediction

  • Disease burden patterns

  • Community health insights

  • Regional risk mapping
     

These tools help improve national healthcare planning.

Challenges in ML Healthcare Adoption

While ML is powerful, challenges include:

  • Data quality issues

  • Need for clinical validation

  • Privacy concerns

  • Infrastructure limitations

  • Need for skilled professionals
     

SecondMedic follows ethical ML standards and ensures secure data practices.

Future of Machine Learning in Indian Healthcare

Upcoming innovations include:

  • Deep learning diagnostics

  • Digital health twins

  • Fully AI-driven preventive dashboards

  • ML-based robotic treatments

  • Genomic ML predictions
     

SecondMedic is committed to building future-ready ML healthcare solutions.

Conclusion

Machine learning in healthcare India is transforming medical care through predictive analytics, personalized treatment, and early disease detection. SecondMedic uses machine learning across its digital ecosystem to deliver accurate, efficient, and patient-centered care.

To explore ML-powered healthcare tools, visit www.secondmedic.com

References

  1. NITI Aayog – AI & ML in Indian Healthcare

  2. WHO – Machine Learning in Clinical Practice

  3. ICMR – India Chronic Disease Data

  4. IMARC – AI & ML Healthcare India

  5. FICCI – Emerging Health Technologies India

See all

Live Doctor consultation
Live Doctor Chat

Download Our App & Get Consultation from anywhere.

App Download
call icon for mobile number calling and whatsapp at secondmedic